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Perturbatively, such processes can be very slow provided that the gravity sector violates

Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay

processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of

ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after pos-

itive energy objects). We find the corresponding instantons and calculate their Euclidean

action. In some cases, the instantons induce topology change or have negative Euclidean

action. To shed some light on the meaning of such peculiarities, we also consider the nu-

cleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean

calculation can be compared with the canonical (Lorentzian) description of tunneling. We

conclude that non-perturbative ghost nucleation processes can be safely suppressed in phe-

nomenological scenarios.
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1. Introduction

Recently it has been suggested that the smallness of the observed cosmological constant

can be attributed to an approximate “energy symmetry” [1]. The idea is that Nature is

endowed with an exact copy of the matter sector, but with an overall minus sign in the

action [2, 1],

L =
√−g{M2

P R + Lmatt(ψ, g) − Lmatt(ψ̂, g) + · · ·}. (1.1)

Here, g is the metric, ψ are ordinary matter fields (including those of the Standard Model),

and ψ̂ are the ghost fields. Energy parity is defined by ψ → ψ̂, ψ̂ → ψ, g → g. Ignoring

gravity, the Hamiltonian H transforms as

H → −H . (1.2)

The vacuum state |0〉 is defined as parity invariant, and from (1.2) the corresponding

vacuum energy vanishes to all orders in perturbation theory. However, gravity breaks the

energy symmetry and a cosmological constant is induced. It was argued in [1] that the
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magnitude of this vacuum energy can be comparable to the one suggested by observations

provided that the gravitational cut-off scale µ is sufficiently low (lower than the inverse

of 30 microns, about an order of magnitude beyond the reaches of ongoing short distance

probes of gravity).

“Phantom” matter has also been invoked in phenomenological studies of dark en-

ergy [3 – 5], as a way of obtaining an effective equation of state parameter w < −1. This

violates all the standard energy conditions, but is not at all disfavoured by observations. A

ghost sector is also present in the recently proposed B-inflation, based on effective theories

with only second derivatives of a scalar field [6].

In all of these cases, the Hamiltonian is unbounded below, and disaster would follow

unless one postulates that the Lorentz symmetry is broken at a certain energy scale [5].

The reason is simple. In the model (1.1), empty space can decay into a pair of ψ ordinary

particles and a pair of ψ̂ ghost particles

|0〉 → ψψψ̂ψ̂ (1.3)

(if particles are charged, one in each pair should be understood as the antiparticle). Let the

momenta of the ordinary particles be p1 and p2, and the momenta of the ghost particles k1

and k2. From translation invariance, the decay amplitude takes the form 〈p1, p2, k1, k2|0〉 =

A(p1, p2, k1, k2) δ(4)(p1 +p2 +k1 +k2), which after integration over external momenta leads

to the vacuum decay rate per unit volume

Γ =

∫

d4P γ(P ), (1.4)

where γ(P ) =
∫

dp̃1 dp̃2 dk̃1 dk̃2 |A|2 δ(4)(P + k1 + k2) δ(4)(P − p1 − p2). In a Lorentz

invariant theory, γ(P ) is just a function of s = −PµPµ, and Defining ~v = s−1/2 ~P , we have

Γ =

∫

ds s γ(s)

∫

d3~v

2
√

1 + ~v2
. (1.5)

Physically, the last integral corresponds to the fact that there is no preferred reference

frame, and the total momentum Pµ of the pair of particles (or the pair of ghosts) is equally

likely to fall anywhere on the mass-shell of radius s1/2. Particles only interact with ghosts

gravitationally, and so the momentum Pµ is transferred by gravitons. The decay rate is

in principle infinite (due to the mass-shell integral) but it can be rendered finite if we

postulate that Lorentz invariance is broken in the gravitational sector at some scale E [5].

The remaining integral over s can be finite in a theory where gravity becomes soft at a

certain cut-off scale µ, as it is in fact assumed. The process becomes completely negligible

if E is comparable to the cut-off scale µ . (30µm)−1 discussed above [1]. Similarly, empty

space can decay to ghosts ψ̂ and gravitons h,1

|0〉 → hhψ̂ψ̂. (1.6)

1Ref. [1] actually considered the decay |0〉 → h∗ψ̂ψ̂, where h∗ is an “excited” (soft-scale) graviton, which

is a more dominant process than (1.6). We shall not consider the non-perturbative analogue of this process,

since it cannot be described in terms of the low energy effective action (1.1).
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In this case, the integrals over the momenta of the external gravitons must be cut-off at the

Lorentz violating energy scale E . In this way, the vacuum can be made sufficiently stable

to perturbative decay processes, in spite of the ghosts [1, 4].

Although perturbative processes may be suppressed by the Lorentz-violating physics, it

is conceivable that non-perturbative processes may quickly destabilize the present vacuum,

through the production of lumps of non-relativistic ghost matter. The purpose of the

present paper is to investigate the non-perturbative analogues of (1.3) and (1.6). Decays

that proceed via non-perturbative tunneling are typically slower than their perturbative

counterparts, but when ghosts are involved there are several reasons why this is not so

obvious.

In accordance with the equivalence principle, a lump of ghost matter tends to fall

towards the potential well created by a positive energy object. On the other hand, the

repulsive gravitational field it produces tends to push the positive energy object away. It

has been known for some time that this leads to a runaway behaviour, where the positive

energy object is chased after by the ghost [7 – 10], with a constant acceleration. Such

configuration is known as a Bondi dipole [7]. As we shall see, such self-accelerating solutions

can be continued to the Euclidean section, leading to a semiclassical description of the

spontaneous nucleation of pairs of Bondi dipoles. This would be the non-perturbative

analogue of (1.3). A simple estimate (which we will confirm by rigorous calculation) gives

the Euclidean action of this process as ∼ m+d, where d is the size of the dipole and m+

is the mass of its ordinary positive-mass component. Even if we impose d & µ−1, we see

that the action can dangerously approach a value of order one if the Compton wavelength

of the particles produced is also close to the gravitational cutoff.

The analogue of (1.6) is the pair creation of self-gravitating lumps of ghost matter,

which repel each other. The possibility of this process is suggested by the following weak

field argument. The interaction energy of two ghost particles at rest, with identical mass

m < 0, is given by Egrav = Gm2/2r. Here G is Newton’s constant and 2r is the distance

between the masses. For r = −Gm/4 the positive gravitational energy is equal to minus

the rest mass energy of the pair Egrav = −2m, so this configuration can in principle pop

out of the vacuum without violating energy conservation. Also, the initial acceleration of

each particle is given by a = 1/r, suggesting that there is a Euclidean solution where the

ghost matter runs around a circle of radius 1/a. Note, however, that for r ∼ −Gm the

gravitational field is of order one, and non-linear gravity must be taken into account. The

corresponding instantons still exist, and have interesting peculiarities which make their

interpretation non-trivial. First of all, they can produce a topology change, and second,

the corresponding Euclidean action (defined as the bounce action minus the background

action) can be negative.

To shed some light into the meaning of such peculiarities, we shall first consider the

simpler example of vacuum decay in a theory where the matter and the ghost sectors

support domain wall solutions. In this case, the process of spontaneous nucleation of

concentrical spherical domain walls of ordinary and ghost matter chasing after each other is

the analogue of (1.3). The analogue of (1.6) is the spontaneous creation of spherical domain

walls of ghost matter. If the cosmological constant is exactly vanishing, the instanton for
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the latter process changes the topology of space and a new boundary appears inside of the

domain wall. This makes the calculation of the corresponding Euclidean action somewhat

ill-defined. On the other hand, in the presence of a small cosmological constant (such as

the one present in our universe), the topology does not change at all and the Euclidean

action can be calculated unambiguously. Interestingly, it turns out to be negative. These

features are quite similar to what happens in the case of pair creation of lumps of ghost

matter, but the advantage here is that the geometry is much simpler, and the Euclidean

calculation can be compared with a canonical (Lorentzian) description of tunneling.

The plan of the paper is the following. Since the subject of tunneling in theories with

ghosts is fraught with many subtleties, we have developed it in quite some detail in sec-

tions 2 through 4. The specific application of our results to the energy-symmetric scenario

of [1] is then discussed in the concluding section 5, to which phenomenologically-minded

readers might want to jump directly if not interested in the theory of ghost tunneling.

The more technical sections 2–4 consist of a discussion of: the spontaneous nucleation

of domain walls (section 2); the pair creation of Bondi dipoles, i.e., the non-perturbative

analogue of (1.3) (section 3, where also we briefly review several technical aspects of the

axisymmetric class of solutions for the benefit of readers unfamiliar with them); the sponta-

neous creation of self-gravitating lumps of ghost matter, i.e., the non-perturbative analogue

of (1.6) (section 4). Some details of the canonical WKB construction of tunneling paths

are deferred to the appendix.

2. Ghosts through the tunnel

In field theory, semiclassical tunneling rates are usually estimated through the expression

Γ ∼ e−IE . (2.1)

Here, IE is the action of the Euclidean instanton describing the decay, minus the action of

the background, and we have omitted the prefactor arising from integration of fluctuations

around these solutions. For ordinary fields, with the rotation t = itE , the Euclidean action

is positive definite, IE > 0, and the above formula gives an exponential suppression in

the limit when the semiclassical approximation is valid, IE À 1. With the same rotation

t = itE , the Euclidean action for ghost matter is negative definite, IE < 0, and from a

naive application of (2.1) one may be tempted to conclude that ghosts lead to catastrophic

decay rates. However, this conclusion would be premature. Rather, the problem is that the

Euclidean path integral is ill-defined: in order to make it convergent, ordinary matter and

ghosts would require opposite Wick rotations. Hence, the standard Euclidean methods are

not directly applicable in the present context.

For instance, in the limit when gravity is neglected G → 0, the theory (1.1) is symmetric

under energy parity. In this limit, ordinary and ghost matter are decoupled and have

exactly the same dynamics. Note that, as a consequence, in e.g., Schwinger pair production,

it is just as hard to screen a ghost electric field by nucleation of charged ghosts, as it is

to screen an ordinary electric field by nucleation of ordinary charged particles. So in both
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cases, instanton processes must be exponentially suppressed, as

Γ ∼ e−|IE |. (2.2)

Thus, when gravity is switched off, nonperturbative processes in the ghost sector will not

bring any disaster, even if with the standard rotation the Euclidean action is negative.

When gravity is switched on, both sectors are coupled and, as mentioned above, the

standard Euclidean methods do not apply. Hence, we should try to develop some under-

standing of the problem from the canonical approach to tunneling. In the WKB approx-

imation, the wave function is of the form Ψ ∼ A exp(iW ) + B exp(−iW ), where for a

simple quantum mechanical system W (q) =
∫ q

p(q′)dq′, and the integral is taken along a

semiclassical trajectory. Under the barrier, the momentum p is imaginary and Ψ becomes

a superposition of growing and decaying exponentials. We are interested in the situation

where the wave function is outgoing after tunneling, so generically we have a comparable

contribution of the growing and decaying modes at the turning point after the barrier. This

means that the amplitude Ψa after the barrier is exponentially smaller than the amplitude

Ψb before the barrier

|Ψa/Ψb|2 ∼ exp(−2|∆W |) (2.3)

Here, ∆W is the difference in W evaluated at the two turning points. From this perspective,

we should expect that a tunneling process is suppressed, whether it involves ghosts or not.

In order to gain some intuition on this problem, we shall consider in the following

subsections the spontaneous nucleation of spherical domain walls. The dynamics of do-

main walls is sufficiently simple to be discussed in the canonical formalism. First, in

subsections 2.2–2.4 we shall describe some instanton solutions which in the standard in-

terpretation would correspond to the nucleation of walls in flat and in deSitter space. In

subsection 2.4 we consider the same processes in the canonical approach, without refer-

ence to Euclidean methods. Finally, in subsection 2.5, and in the light of the examples

considered, we ellaborate on the possible relation between the Euclidean action and the

nucleation rates.

2.1 Nucleation of diwalls from flat space

The gravitational field of an ordinary domain wall is repulsive [11]. On the other hand, a

ghost wall will be attractive, and we may expect to find solutions where a wall of ghost

matter is chased after by a wall of usual matter. By analogy with the Bondi dipoles

discussed in the introduction, we may call such a configuration a diwall.

Domain walls are rather easy to treat as distributional sources in General Relativity.

Their effect is a discontinuity in the extrinsic curvature Kab accross the worldsheet [12]

[Kab] = −4πGσγab, (2.4)

where σ is the tension of the wall and γab is the induced metric. Consider a Euclidean

spherically symmetric solution with a wall of positive tension σ1 and a wall of negative

tension −σ2. The metric takes the form

ds2 = dy2 + R2(y)dΩ3, (2.5)
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Figure 1: Conformal diagrams for the construction of the diwall solution. Three different regions

(I, II, III) of Minkowski space are cut out at given radii R1 > R2, and pasted to form a wall of

positive tension (thick solid line) at R1 and a ghost wall of negative tension (thick dashed line) at

R2. In the final diagram, moving towards the right corresponds to increasing radius in I and III,

and to decreasing radius in II.

where dΩ3 is the line element on the 3-sphere and y is a radial coordinate. Outside

the sources, the metric is flat, and the warp factor R(y) is piecewise linear with slope

dR/dy = ±1. At the location of the sources, the slope is discontinuous, to account for the

jump in the extrinsic curvature. Hence, starting from the center of symmetry at y = 0 the

solution is given by (see fig. 1)

R(y) = y (0 < y < R1),

R(y) = 2R1 − y (R1 < y < 2R1 − R2),

R(y) = 2R2 − 2R1 + y (2R1 − R2 < y < ∞). (2.6)

Eq. (2.4) demands that R1 = 1/2πGσ1 and R2 = 1/2πGσ2. The radius R(y) of the 3-

spheres increases up to R1, backtracks to R2, and then increases to infinity. Note that

R2 < R1, which requires σ2 > σ1. For our illustrative purposes, we shall simply assume

that the theory supports domain walls satisfying this inequality.

The solution eq. (2.6) is perfectly regular and asymptotically flat. It can be thought

of as a semiclassical trajectory which interpolates between flat empty space R
3 (at infin-

ity), and the equatorial slice of the metric (2.5). This “turning point” slice contains two

concentrical domain walls of radii R1 and R2.

After nucleation, the evolution is given by the analytic continuation of (2.5) to Loren-

tzian time, which converts the 3-spheres into time-like hyperboloids. In particular, the

positive and negative tension walls expand with constant proper acceleration 1/R1 and

1/R2 respectively. Due to the peculiar “backtracking” form of the metric between R1 and

R2, it is the wall of larger radius (and positive tension) which chases after the one of smaller

radius (and negative tension) as they both expand. This is as it should be, since the wall

of positive tension is repulsive and the other one is attractive.
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The Euclidean action can be easily calculated from

IE = − 1

16πG

∫

d4x
√

g R +
∑

i

siσi

∫

d3ξ
√

γ, (2.7)

where si is the sign of the wall tension (and σi is as usual its absolute value). On shell, the

Ricci scalar is related to the source [13]

√
g R = 24πGσ

∫

d3ξ
√

γ δ4(x − x(ξ)), (2.8)

and integrating over the volume of the 3-spheres, we easily find

Idiwall
E =

1

8πG3
(σ−2

2 − σ−2
1 ) < 0. (2.9)

Note that the Euclidean action is negative. In the limit δσ = σ2 − σ1 ¿ σ, we have

|IE | ∼ (M6
P /σ2)(δσ/σ). This is likely to be very large, unless the wall tensions are very

nearly degenerate, or unless they are very close to the Planck scale Mp.

The diwall instanton (2.6) is an analogue of the process (1.3), where ghost and ordinary

matter are created from the vacuum. Let us now investigate the analogue of (1.6).

2.2 Ghost walls from flat space?

An instanton for a single spherical domain wall of negative tension in an asymptotically

flat space can be constructed along the same lines as in the previous subsection. The warp

factor is now given by (see fig. 2)

R(y) = |y| + R2 (−∞ < y < ∞). (2.10)

From large radii (y → ∞), the worldsheet is seen as a spherical object of radius R2

embedded in an otherwise flat Euclidean space. However, if we cross the worldsheet towards

negative y, we discover that the radius does not shrink to zero. Rather, it grows as we go

in. This “throat” is of course an identical copy of the geometry for y > 0. The topology

of the instanton is not R
4, but R × S3, and the solution has two disconnected boundaries,

one at y → ∞ and another one “inside” the domain wall, at y → −∞.

Calculating the Euclidean action as we did in the previous subsection would yield

IE =
1

πG3σ2
2

> 0. (2.11)

But the fact that the instanton has different topology than the background should give

us pause. The Gibbons-Hawking boundary term Ib
E = −(8πG)

∫

d3ξ
√

γ K at the new

inner boundary (y → −∞) is given by Ib
E = −3πR2

c/4G < 0, where Rc is some large cut-

off radius. It is unclear what subtraction (if any) should be performed on this divergent

contribution, since the original flat space background does not include such inner boundary.

Also, from a canonical point of view, it doesn’t seem possible to go from the original R
3

to the final turning point geometry (with two asymptotically flat regions) by continuous

slicing of the instanton. Because of that, the interpretation of the solution (2.10) as a

semiclassical path describing the nucleation of a ghost wall remains unclear.

Fortunately, the situation is clarified by considering nucleation from a vacuum with a

small cosmological constant.
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Figure 2: Construction of the ghost wall spacetime. Observe the presence of two disconnected

asymptotic boundaries.

2.3 Walls from deSitter space

As mentioned in the introduction, gravity breaks the energy symmetry (1.2). This may

give rise the small observed cosmological constant Λ > 0. In this case, the Euclidean

background is the 4-sphere of radius H−1 = (3/Λ)1/2, with warp factor

Rb(y) = H−1 sin(Hy), (0 ≤ Hy ≤ π). (2.12)

Nucleation of positive tension domain walls in deSitter has been thoroughly studied in

Ref. [13]. The relevant instanton is constructed from two caps of the 4-sphere, joined at

the worldsheet of the domain wall (which is an S3),

Ra(y) = H−1 sin(Hy), (0 ≤ Hy ≤ χ0),

Ra(y) = H−1 sin(2χ0 − Hy), (χ0 ≤ Hy ≤ 2χ0). (2.13)

The angular span χ0 of the spherical cap is determined through the junction condition

(2.4)

tan χ0 =
H

2πGσ1
, (2.14)

where σ1 is the tension of the domain wall. Thus, the radius of the worldsheet is given by

Rw = Ra(y0) = H−1 sinχ0 =
1

√

H2 + (2πGσ1)2
. (2.15)

The Euclidean action can be calculated from (2.7) with an additional vacuum energy term
1

8πG

∫

d4x
√

g Λ. On shell, we can use (2.8) as well as the bulk equations of motion R = 4Λ.

Properly speaking, this instanton would describe the creation from nothing of a deSitter

space containing a wall. If we want to describe instead the transition from empty deSitter

to deSitter with a wall, then we must face the well-known problem that no non-singular

instanton mediates between both spacetimes. For the time being, we will follow the common

procedure of calculating the action for the whole process by subtracting the action IdS of

the background deSitter,

IdS = − π

GH2
. (2.16)
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This will be justified in more detail in the next subsection. Some straightforward algebra

leads to [13]

I+
E =

2π2σ1

H2
√

H2 + (2πGσ1)2
> 0. (2.17)

Let us now consider the nucleation of negative tension walls in de Sitter. In fact,

eqs. (2.14)–(2.17) still hold, with the replacement σ1 → −σ2. The angle χ0, determined by

tan χ0 = − H

2πGσ2
, (2.18)

will be larger than π/2, so instead of having two spherical caps glued to the worldsheet,

it will now be two capped spheres which are glued. The corresponding euclidean action is

negative

I−E = − 2π2σ2

H2
√

H2 + (2πGσ2)2
< 0. (2.19)

Unlike the case of ghost walls from flat space discussed in the previous subsection, the

topology of the instanton is here the same as for the deSitter background, and no additional

boundaries appear. Note that in the limit of a small cosmological constant H → 0, the

action (2.19) tends to negative infinity, unlike the naive result (2.11).

In the limit of small tension, where the walls do not deform the geometry of deSitter,

the equations of motion for positive and negative tension are exactly the same, and therefore

it is expected on general grounds that it is just as hard to create a positive tension wall as

it is to create a negative tension one. Here, we find that |IE| has the same form in both

cases, which supports the use of eq. (2.2) [rather than eq. (2.1)] for the calculation of the

nucleation rates.

It is interesting to observe also that |IE | has the same form for both signs of the tension

even when this tension is large and the background geometry is considerably deformed (note

that the shape of the instantons for positive and negative tension walls is quite different in

this case).

2.4 Canonical approach

In this subsection, we shall consider the processes discussed in the previous ones in the

canonical WKB approach, without reference to Euclidean methods.

Let us consider the system of a spherically symmetric domain wall in the presence of

a cosmological constant Λ ≡ 3H2. Inside the wall, the metric is just empty deSitter space,

whereas outside the wall, and by Birkhoff’s theorem, the metric is Schwarzschid-deSitter,

characterized by a mass parameter M . This system has a single degree of freedom, which

is the radius of the wall. A domain wall of very small radius, and correspondingly very

small mass M , can tunnel to a big domain wall of size comparable to the cosmological

horizon (while the mass parameter M remains of course a small constant). In the limit

when M → 0, this process corresponds to the spontaneous nucleation of a large domain

wall (from an infinitessimally small seed) in an otherwise empty deSitter space. This is

schematically represented in figures 3 and 4 for the case of ordinary walls and ghost walls

respectively.

– 9 –
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Figure 3: WKB path for the spontaneous nucleation of a domain wall of positive tension in deSitter.

The leftmost figure represents the “initial” classical turning point 3-geometry before tunneling. It

consists of a small domain wall of infinitessimal mass M . Inside the wall, the metric is a small

cap of a 3-sphere of radius H−1 (which looks almost flat on the scale of the radius of the wall).

Outside the wall, the geometry is a t = constant section of a Schwarzschild-deSitter metric with a

very small mass. Classically, the small wall would shrink under its own tension and form a small

black hole. However, it has a certain probability for tunneling into a big wall, of size comparable to

the cosmological horizon, through a sequence of interpolating “underbarrier” 3-geometries (whose

construction is described in subsection 2.4 and in the appendix). The “final” turning point geometry

is represented in the rightmost figure. In the limit when M → 0, this final turning point geometry

consists of two large caps of a 3-sphere of radius H−1 glued at the wall. Note that the intermediate

interpolating 3-geometries in such path shrink to a very small size, just a few times larger than the

size of the initial domain wall. In the limit M → 0 this intermediate geometry would shrink to

nothing. The initial and final geometries can also be thought of as equatorial slices of the deSitter

instanton and of the domain wall instanton [given in eq. (2.13)] respectively.

Figure 4: Same as figure 3 for a ghost domain wall. The final turning point geometry consists now

of two capped 3-spheres of radius H−1, which correspond to the equatorial slice of the instanton

(2.13). As shown in the appendix, another difference with the case of positive tension walls is that

the volume of the intermediate three-geometry in the semiclassical path never shrinks to a very

small size, even in the limit M → 0.

In order to describe this process, we shall closely follow the procedure developed in

ref. [14]. The action is given by

I =
1

16πG

∫

d4x
√−gR− Λ

8πG

∫

d4x
√−g − σ

∫

d3ξ
√−γ. (2.20)

The spherically symmetric metric takes the form

ds2 = −(N t)2dt2 + L2(dr + N rdt)2 + R2dΩ2, (2.21)

– 10 –
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where N t, L and R are functions of r and t, and dΩ2 is the metric on the two-sphere. The

action can be written as

I =

∫

dt p q̇ +

∫

dr dt (ΠLL̇ + ΠRṘ − N tHt − N rHr), (2.22)

where q(t) is the radial coordinate r of the wall at time t, the momenta

p = −4πσR2L2(q̇ + N r)[N t 2 − L2(q̇ + N r)2]−1/2,

ΠR = [(N rLR)′ − (LR)̇ ]/GN t,

ΠL = R (N rR′ − Ṙ)/GN t. (2.23)

are conjugate to q, L and R respectively, and the Hamiltonian densities are given in terms

of the canonical variables as

Ht(r) =
GLΠ2

L

2R2
− GΠLΠR

R
+

1

2G

{(

2RR′

L

)′

− R′2

L
− L

}

+
ΛLR2

2G
+

E

L
δ(q − r), (2.24)

Hr(r) = R′ ΠR − L Π′
L − p δ(q − r). (2.25)

Here E = sign(σ)(p2 + 16π2σ2L2R4)1/2, and the primes indicate derivatives with respect

to r. Time derivatives of lapse and shift do not appear in the action, which leads to the

constraints ΠNt = ΠNr
= 0. When imposed on the wave function, this leads to

Ψ = Ψ[L,R, q].

Derivative of the action with respect to lapse and shift gives the constraints Ht,r = 0.

With the ansatz

Ψ = eiW (L,R,q),

the WKB approximation is obtained from a solution of the Hamilton-Jacobi equations

Ht,r

(

∂W

∂L
,
∂W

∂R
,
∂W

∂q
,L,R, q

)

= 0.

We are interested in a solution which interpolates between suitable turning points.

Away from the source at r = q(t), we may define

M(r) =
GΠ2

L

2R
+

R

2G

{

1 −
(

R′

L

)2

− ΛR2

3

}

, (2.26)

and we have M ′ = −R′Ht/L − GΠLHr/RL = 0, where we have used the Hamiltonian

constraints. This implies that M is constant for r 6= q. At the turning point geometries

the momenta vanish, ΠL = 0, and one has

(

dR

dy

)2

= 1 − 2GM

R
− ΛR2

3
, (2.27)

where dy = Ldr. This is of course the relation between the intervals of proper length

dy and proper radius of the 2-spheres dR in the Schwarzschild-(A)dS geometry (in static
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coordinates). We are mostly interested here in the case with M = 0, and with Λ > 0,

where turning point geometries Rb(y) and Ra(y) before and after the tunneling will be the

equatorial slices of the 4-sphere and of the domain-wall deSitter solution. The functions

Rb(y) and Ra(y) are given by eqs. (2.12) and (2.13) respectively.

From (2.26), we have

Π2
L = −R2

G2

{

1 + V (R) −
(

R′

L

)2
}

, (2.28)

where we have introduced

V (R) = −2GM/R − (Λ/3)R2.

At the wall (r = q), the constraints are consistent with L and R being continuous, while

they imply the following discontinuities for ΠL and R′:

[ΠL] = −p/L, [R′] = −GE/R. (2.29)

(note that at the turning point, the first equation is trivial since the momenta vanish, and

the second reproduces eq. (2.4)). Moreover, from eq. (2.25) we have

ΠR = L
Π′

L

R′
+

p

R′
δ(q − r), (2.30)

which by virtue of (2.29) does not have delta-function contributions on the wall. Note that

from (2.28) and (2.30) we can write ΠL and ΠR in terms of L(r) and R(r). In particular

ΠR =

(

L

R
+

V ′/2 − (R′/L)′

1 + V − (R′/L)2

)

ΠL, (2.31)

where V ′ ≡ dV (R)/dR and ΠL is given by (2.28). Also, the momentum p is determined

by (2.29) in terms of L(r) and R(r) in the neighborhood of r = q.

The solution of the Hamilton-Jacobi equation W (L,R, q) satisfies

δW = p δq +

∫

(ΠL δL + ΠR δR) dr, (2.32)

for arbitrary variations δq, δL(r) and δR(r). Under the barrier, where R′2 ≤ L2(1 + V ),

we may define [14]

Ω(L,R, q) = G−1

∫

dr
(

RL
√

1 + V − (R′/L)2 − R R′α
)

, (2.33)

where we have introduced the function

α = arccos

(

R′

L
√

1 + V

)

. (2.34)

Here, the inverse cosine is defined in the range 0 ≤ α ≤ π (so that the sine is positive). It

is straightforward to check that under arbitrary variations of the arguments of Ω, we have

δΩ = ±iδW − G−1

∫

dr
d

dr
(αR δR) + G−1[R′α]R δq. (2.35)
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The second term in the right hand side arises from partial integration in the variation with

respect to R, and it is non-vanishing because R′ is discontinuous across the wall. The

square brackets in the last term indicate the discontinuity (that is, the quantity evaluated

at r = q+ε minus the quantity evaluated at r = q−ε). This term arises from variation with

respect to q of the second term in (2.33) (variation of the first term in (2.33) produces the

term ±ipδq, which has been included in ±iδW ). The last two terms in the right hand side

of (2.35) only depend on quantities evaluated near the wall. Using dR̂ = δR + R′δq, where

R̂ = R(r = q) is the proper radius of the wall, they can be combined into G−1[α]R̂dR̂.

Hence, we have

± iW (L,R, q) = Ω − G−1

∫

[α]R̂dR̂. (2.36)

Since α is a function which depends on R,R′ and L, it may appear that the last integral

cannot be done unless a semiclassical path is completely specified. However, the system is

integrable, and [α] can in fact be found from the discontinuities (2.29) in terms of R̂. From

eqs. (2.28) and (2.34), we have

(R′/L) =
√

1 + V cos α, ΠL = ±iG−1R
√

1 + V sin α. (2.37)

It follows from (2.29) that

[
√

1 + V sin α] = ±i(Gp/LR), [
√

1 + V cos α] = −(GE/LR). (2.38)

Squaring and adding both equations in (2.38), we immediately find

cos[α] ≡ cos(α+ − α−) =
2 + V+ + V− − (4πGσR̂)2

2
√

1 + V+
√

1 + V−
, (2.39)

where the subindices + and − refer to the limiting values on both sides of the wall. Note

that V+ = V (R(q + ε)) and V− = V (R(q− ε)) can be different if the cosmological constants

are different on both sides of the wall, or if the bubble configuration has non-vanishing mass

M 6= 0. Eq. (2.38) determines [α] in terms of R̂, but only up to a sign. Since 0 ≤ α± ≤ π,

we have

sign[α] = −sign[cos α] = −sign[R′/
√

1 + V ]. (2.40)

In particular, we shall see in the appendix that in the applications we are interested in,

one of these two conditions are met: either we can construct a semiclassical path for which

p = 0, or we can construct a semiclassical path for which V+ = V−. In both cases, it follows

that

sign[α] = signE = signσ. (2.41)

We are interested in the change i∆W between the turning point geometries Rb and

Ra,

± i∆W = Ω(Ra)−Ω(Rb)−
∫ R̂a

R̂b

sign[α]

G
arccos

[

2 + V+ + V− − (4πGσR̂)2

2
√

1 + V+
√

1 + V−

]

R̂dR̂. (2.42)

where it is now understood that the inverse cosine lies between 0 and π. The value of

Ω at the turning point geometries is easy to evaluate. The first term in the integrand of
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(2.33) vanishes, and in the second term α = πΘ(−R′), where Θ is the step function. As

noted in [14], the integral only receives contributions where the geometry is backtracking

(R′ < 0), and the integral yields

Ω = (π/2G)∆R2, (2.43)

where ∆R2 is the absolute value of the change in R2 in the backtracking part of the

geometry.

Let us now particularize the general formula (2.42) to the problem of nucleation of

walls in deSitter space, where the turning point geometries are given by (2.12) and (2.13).

For deSitter space

Ω(Rb) =
π

2GH2
. (2.44)

For the nucleation of positive tension walls, the geometry backtracks from Rw, given by

(2.15), to R = 0, and so

Ω(Ra) =
πR2

w

2G
, (σ > 0). (2.45)

On the other hand, for the nucleation of negative tension walls, we have two backtracking

pieces. First from R = H−1 to R = Rw, and then from R = H−1 to R = 0. Both contribute

and give rise to

Ω(Ra) =
π

GH2
− πR2

w

2G
, (σ < 0). (2.46)

In both cases, we have

∆Ω = (Ωa − Ωb) =
π

2G
(R2

w − H−2) signσ. (2.47)

The integral in (2.42) is taken between R̂b = 0, corresponding to a wall of infinitessimal

size before tunneling, and R̂a = Rw. Also, since we are discussing the case where the

cosmological constant outside and inside the wall are the same, and where the initial

bubble has infinitessimally small mass, we have V+ = V− = −H2R̂2. The third term in

(2.42) becomes

−signσ

2GH2

∫ xw

0
arccos

[

1 − (1 + 8π2G2σ2H−2)x

1 − x

]

dx =

−π

4GH2
[2πGσRw − (2πGσRw)2signσ], (2.48)

where xw = H2R2
w = H2/[H2 + (2πGσ)2]. Adding (2.47) and (2.48), we have

±i∆W = −π2σRw

H2
= −1

2
IE (2.49)

where IE is given by eq. (2.17) [or by eq. (2.19)] for a positive [or negative] tension wall.

Eq. (2.42) applies also to the case of diwalls. In this case, V = 0 and the calculation

simplifies somewhat. The turning point before tunneling is given by a flat three dimensional

space Rb(y) = y, whereas the turning point after tunneling is given by eq. (2.6). The first

and second terms in the right hand side of (2.42) can still be calculated from (2.43). The

– 14 –



J
H
E
P
0
3
(
2
0
0
6
)
0
2
8

flat space has no backtracking part, as Rb is monotonic, and doesn’t contribute, whereas

for the turning point after tunneling we have

π

2G
∆R2 =

1

8πG3
(σ−2

1 − σ−2
2 ).

The third term in the right hand side of (2.42) includes a separate contribution from each

one of the walls, which is readily calculated and contributes minus one half of the previous

terms. Thus, we find

±i∆W =
1

16πG3
(σ−2

1 − σ−2
2 ) = −1

2
IE , (2.50)

where now IE is given by (2.9).

Thus, both for diwalls nucleating in flat space and for walls (ghost or ordinary) nucle-

ating in deSitter, the WKB ”suppression factor” is given by

e−2|∆W | = e−|IE |. (2.51)

In the next subsection we shall further elaborate on the relation between the Euclidean

action and the tunneling rates in general.

Note that, since the system is integrable, the precise form of the semiclassical path has

not been used in deriving (2.42) (except in determining the sign of [α], see the discussion

around eq. (2.41)). In the appendix, we construct a WKB tunneling path for the cases

discussed in this subsection. The trajectories considered are such that the radii of the walls

grow monotonically from an infinitessimally small size to the turning point size Rw. It is

interesting to note, in particular, that for the case of creation of negative tension walls in

deSitter, the deformation of the geometry is smooth and the three volume is never zero

(This is in contrast with the instanton picture where the deSitter geometry first disappears

and then reappears with a large bubble in it). Note also that, due to the change in topology,

we do not have the possibility of constructing a semiclassical path for the case of nucleation

of negative tension walls in exactly flat space. Physically, this seems to be in agreement

with the fact that the tunneling suppression for nucleation of such objects in deSitter

becomes insurmountable in the limit H → 0.

2.5 The Euclidean action and the tunneling rates

Eq. (2.51) suggests that given a semiclassical path with Euclidean action IE, the corre-

sponding tunneling rate is given by

Γ ∼ e−2|∆W | = e−|IE |. (2.52)

For systems with a single degree of freedom, the tunneling suppression is indeed given by

e−2|∆W |. However, for loosely bound systems of ordinary and ghost matter, the situation

is not so clear, and the above formula need not be of general validity.

To illustrate this point, let us consider the Euclidean solution corresponding to the

nucleation of diwalls in flat space, considered in subsection 2.1. We may in fact study the

analogous solution in the presence of a cosmological constant. It is straightforward to show
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V

d L d+−

Figure 5: Electric potential barrier exemplifying how a bound system can behave very differ-

ently than its constituents in a tunneling process. The probability that a proton tunnels through

this potential is negligible for large L. An electron feels an inverted potential, and if its energy

is small enough it cannot appear as an asymptotic state in the region to the right. However, a

hydrogen atom can easily cross the barrier as long as it is not ionized by the electric field. Simi-

larly, a diwall, or a pair of Bondi dipoles, can be nucleated out of empty space if the normal and

ghost constituents are tightly bound by gravity, even if their separate nucleation rates are strongly

suppressed.

that the corresponding Euclidean action is given by

Idiwall
E (σ1, σ2,H) = I+

E (σ1,H) + I−E (σ2,H) (2.53)

where I±E are the actions for nucleation of positive and negative domain walls in deSitter,

given by eqs. (2.17) and (2.19). Note that, since I+
E and I−E have opposite sign, we

have

|Idiwall
E (σ1, σ2,H)| < |I+

E (σ1,H)| + |I−E (σ2,H)|. (2.54)

This means that if eq. (2.52) is valid, it should be easier to form a diwall, than it is to

create a wall of negative tension and then, subsequently, another wall of positive tension.

Is this a reasonable expectation?

A simple system wich bears a useful analogy with the system of diwalls is that of

an electron and a proton crossing an electric barrier. Consider a one-dimensional barrier

(figure 5) where from left to right, the electric field −E is negative in a segment of width

d−, vanishing in a large segment of length L, and positive with strength +E in a third

segment of width d+ > d−. A proton of very low kinetic energy impinging from the left

bounces off the first segment, repelled by the electric field. The probability for it to go

through the barrier is exponentially small, and practically vanishing in the limit of large

L. Likewise, an electron of very low kinetic energy has no trouble going through the first

two segments of the barrier, but will never make it to the asymptotic region on the right

since it simply doesn’t have enough energy. On the other hand, if the proton and electron

are bound together, the resulting hydrogen atom has no trouble going through the barrier.

The electron pulls the proton through the negative electric field, and the proton pulls the

electron through the third segment with positive electric field.
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Going back to the system of diwalls, let us first consider the limit H ¿ Gσ, when

the Hubble radius is much larger than the scale characterizing the gravitational field of

the walls. In this limit, the walls can be thought as a tightly bound system. In flat

space (H → 0) both I+
E and I−E diverge. Physically, it is impossible to nucleate either a

positive energy wall or a negative energy wall in Minkowski. Separately, both processes

would lead to a breakdown of energy conservation (barring the possibility of topology

change). Yet, the diwall process seems to be possible and it should occur at a finite rate.

The two walls push and pull each other through a barrier which none of them would be

able to penetrate separately. In this sense, it is not surprising that eq. (2.52) gives a

higher probability to nucleation of diwalls than to the separate nucleation of walls of either

tension.

On the other hand, in the limit Gσ ¿ H the gravitational field of the walls (and their

interaction) becomes negligible. In this limit, the walls can be treated as non-gravitating

objects in the background external field of a fixed deSitter space. The instanton for nucle-

ation of walls of positive or negative tension is just a maximal worldsheet 3-sphere of radius

H−1 embedded in S4. The corresponding action is I±E ≈ ±2π2σH−3. The action for the

diwall is Idiwall
E ≈ 2π2(σ1−σ2)H

−3, and in the limit when the positive and negative tension

walls have approximately the same modulus, δσ/σ ¿ 1, we have |Idiwall
E | ¿ |I+

E | + |I−E |.
Eq. (2.52) would suggest that if δσ ¿ H3, diwall production is unsuppressed, even if

σ À H3. However, this cannot be true, since in the limit we are considering the interac-

tion between walls is negligible. Production of walls (and diwalls) should be suppressed,

with an exponent which is parametrically of order σ/H3. In the example of the proton

and electron crossing an electric barrier, this limit of weakly bound components would

correspond to the case when there is a thermal bath of temperature T & V0, where V0

is the ionization energy, or when the electric field is intense enough to ionize the atom

Erb & V0, where rb is the Bohr radius. In both cases, the proton cannot get hold of the

electron, and both have to go through the barrier on their own, so tunneling is highly

suppressed.

The above examples suggest that eq. (2.52) is a good estimate of the nucleation rate

only in the case when we have a tightly bound system of ghosts and ordinary matter.

However, it overestimates the rate when the gravitational binding energy between ghost

and matter components is weak compared to any other force involved in the tunneling (e.g.,

the expansion of the universe caused by Λ in the case of wall production in deSitter, the

difference in pressure on both sides of the wall if we consider simultaneous false vacuum

decay in ghost and matter sectors, or the electric force if we consider the Schwinger process

occurring simultaneously in both sectors). In the general case, eq. (2.52) is at best a

conservative upper bound to the nucleation rate.

In the following sections, we shall be interested in nucleation of lumps of ghost and

ordinary matter in flat space. In this case, the system can be considered to be tightly

bound, since the gravitational energy-momentum transfer between matter and ghosts is

what allows the system to nucleate (there is no other driving force). In the light of the above

discussion, we shall adopt eq. (2.52) as our estimate for the nucleation rate. Investigation

of the general case of weakly bound systems is left for further research.
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3. Nucleation of Bondi dipoles

We now turn to discussing the spontaneous nucleation of particle-like ghosts, accompanied

with ordinary particles.

3.1 Preliminaries

A spherically symmetric lump of neutral ghost matter of mass m < 0 coupled to non-ghost

gravity creates the gravitational field

ds2 = −
(

1 +
2G|m|

ρ

)

dt2 +
dρ2

(

1 + 2G|m|
ρ

) + ρ2dΩ2 . (3.1)

This metric exhibits a naked singularity at ρ = 0. This singularity is usually regarded as

a ‘valuable’ one [15], i.e., one not to be regularized since it signals a pathological negative-

energy spectrum unbounded below. However, here we intend to explore how deadly this

pathology is. So we assume that (3.1) is a valid description of the gravitational field, though

only down to distances of the order of the gravitational cutoff distance scale 1/µ, or, for a

light ghost lump |m| < µ, down to the Compton wavelength 1/|m|.
We are interested in configurations with several collinear ghost and normal particles.

The class of metrics that describes these are the axisymmetric Weyl solutions

ds2 = −e2Udt2 + r2e−2Udφ2 + e2(ν−U)(dr2 + dz2) (3.2)

where U and ν are functions of r and z. This is a well-studied system (see e.g., [16])

so we shall only sketch its solution. The vacuum Einstein equations can be completely

integrated in an explicit form: the function U satisfies a Laplace equation in the auxiliary

space dr2 + dz2 + r2dφ2, and then ν can be obtained from U by quadratures. Hence the

solutions are fully determined once we specify the sources for the axisymmetric potential

U . For example, the Schwarzschild solution with positive mass m corresponds to taking as

a source an infinitely thin rod of length 2Gm and linear mass density 1/2 along the z axis

(fig. 6), so

e2U =
X2

X1
(3.3)

and

e2(ν−U) =
Y12

4R1R2
, (3.4)

where we introduce notation that is useful for this class of solutions [17],

Ri =
√

r2 + (z − ci)2 , (3.5)

Xi = Ri − (z − ci) , (3.6)

Yij = RiRj + (z − ci)(z − cj) + r2 , (3.7)

and, for this particular solution, c1 − c2 = 2Gm. It may seem odd that the spherically

symmetric Schwarzschild solution is obtained from a non-spherical source, but this is just

an artifact of the Weyl representation. The rod at r = 0, c2 < z < c1, in fact corresponds
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Gm

1c2

2

c

Figure 6: Axisymmetric Weyl solutions are specified by giving the sources along the axis for the

‘potential’ U . The Schwarzschild solution corresponds to an infinitely thin rod of linear density

+1/2 and length 2Gm.

2c1 c2 c1 c0c

Figure 7: Left: the source for a ghost particle of mass −m
−

is a rod of length 2Gm
−

and linear

density −1/2 (dotted rod). This can be obtained from eqs. (3.3)–(3.4) by simply taking c1 < c2.

Right: the C-metric describing accelerating black holes corresponds to a finite rod for the black

hole, and a semi-infinite rod for the acceleration horizon. Weyl coordinates cover only one Rindler

wedge of the entire spacetime.

to the Schwarzschild horizon, and it is possible to see in general that a regular horizon is

present iff the rod density is 1/2, otherwise a naked singularity will appear. In this paper,

however, we will only consider situations where the geometry is cutoff before the horizon

(or the naked singularity) is reached.

The field of a ghost particle (3.1) is given by a configuration similar to the one above,

but now the density of the rod is instead −1/2. A simple way to obtain this from the

solution (3.3) and (3.4) is to take c1 < c2, with c2 − c1 = 2G|m|. For definiteness and

simplicity we shall only consider normal and ghost particles with rod linear densities ±1/2

—other densities do not introduce any significant qualitative changes.

It is now easy to construct axisymmetric configurations with arbitrarily many collinear

particles. One simply superposes rods corresponding to each of the particles. U is then

the linear superposition of the fields of each rod, and then the function ν can be explicitly

integrated [8, 17, 18]. Of course, in general the particles will attract each other (or possibly

repel if ghosts are present) so there will be uncancelled forces among the particles. This

reflects itself in the geometry through the presence of conical singularities on the portions

of the z-axis away from the rods. For Weyl metrics (3.2), the conical deficit angle δ at a

given point z0 on the axis away from any rod, is given by

2π − δ = lim
r→0

2π√
grr

d
√

gφφ

dr
|z=z0

= 2π lim
r→0

e−ν |z=z0
. (3.8)

A conical deficit angle δ > 0 on a certain segment of the axis can be interpreted as a

string stretched along the segment and pulling together the objects at its endpoints, while

a conical excess angle δ < 0 is a strut pushing the objects apart. An integration constant

in ν (corresponding to constant rescalings of φ) can be used to eliminate possible conical

singularities on a given segment, but in general, once this is fixed, there will remain conical

singularities at other segments. In some cases it will be possible to tune parameters in the

solution to cancel all conical singularities: the system is then balanced. If it is impossible

to cancel all of them, then external forces are needed to keep the configuration in place.
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d

Figure 8: A pair of Bondi dipoles accelerating apart. Weyl coordinates cover only one wedge

(shaded) of the full spacetime, containing a single Bondi dipole. A normal particle (solid worldline)

is chased by a ghost (dotted worldline). The dipoles self-accelerate away with uniform acceleration,

and the configuration is boost-invariant.

Finally, we note that a semi-infinite rod of density +1/2 corresponds to an acceleration

horizon. The Weyl coordinates cover in this case only a Rindler wedge of the whole space-

time, but they can be extended across the Rindler horizon to provide a maximal analytic

extension of the geometry, which contains a second copy of the Rindler wedge [8, 9]. For

instance, the configuration corresponding to a finite, positive mass rod, and a semi-infinite

rod, is known as the C-metric (see fig. 7) and describes two black holes accelerating away

with uniform acceleration, each in a separate Rindler wedge, and being pulled apart by

strings [19, 20].

3.2 Accelerating Bondi dipoles

A Bondi dipole consists of a positive and a negative mass particle [7]. If we construct

the gravitational field of this configuration as the Weyl metric for a positive density and a

negative density rod, and nothing else, then it is straightforward to see that no choice of

the rod parameters is able to cancel all conical singularities on all segments of the axis away

from the rods. In particular, if we eliminate the conical defects at infinity, then a strut

remains inbetween the two particles. This is of course expected, since the two particles

can not remain in static equilibrium. The strut pushes the normal particle away from

the ghost, while the ghost is also pushed away, but having negative mass, it will tend to

accelerate in a direction opposite to the one it is pushed in2. This indicates that the Bondi

dipole will naturally accelerate together, the ghost chasing after the normal particle in a

runaway fashion.

2Hence Gamow’s term “donkey particle” for such ghosts [21].
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Figure 9: Weyl sources for an accelerating Bondi dipole: a ghost particle (negative density rod

at c1 < z < c2) chases a normal particle (positive density rod at c4 < z < c3). The maximally

extended solution contains a second pair accelerating in the opposite direction.

From our previous discussion, it should be obvious how to construct the Weyl metric

for such a configuration3. From left to right, take the sources for the potential U to be

(figure 9): a semi-infinite rod at z > c0 (and of density +1/2) for the acceleration horizon;

a negative density rod at c1 < z < c2 < c0 for the ghost; and a positive density rod at

c4 < z < c3 < c1 for the normal particle. Note that again we have chosen to label the

rod endpoints ci in such a way that the conventional correlative order is inverted for the

negative density rod, i.e., we take c1 < c2. This is done in order to facilitate a direct

comparison to the solution in [17], which described two normal particles (black holes)

accelerating together. Then we can directly read off our solution from [17] as

e2U = A−
X0X2X4

X1X3
,

e2(ν−U) =
Y01Y12Y03Y34Y14Y23

8A−R0R1R2R3R4Y02Y04Y13Y24
(3.9)

with

c4 < c3 < c1 < c2 < c0 , (3.10)

and A− a constant with dimension of inverse length whose value can be changed by coor-

dinate rescalings. For later convenience we choose it as

A−1
− = 2c0 − c1 − c2 . (3.11)

The inversion in the ordering between c1 and c2 in (3.10) compared to [17] changes a

positive mass into a negative one. Note also that we can always perform a shift in z to

fix one of the ci, so the solution contains only four physical parameters. To identify the

physical quantities, we take the approximation where the rods are well separated from each

other, and the dipole has a size smaller than the acceleration length scale, i.e.,

c3 − c4 ∼ c2 − c1 ¿ c1 − c3 ¿ c0 − c2 , (3.12)

3A slightly different version of the Bondi dipole was constructed in [9], with point-like sources for the

normal and ghost particle. These are then “Chazy-Curzon particles”. For our purposes, the qualitative

properties are basically the same as in our solution. In particular, the result for the action of the correspond-

ing instanton takes the same form as in eq. (3.27). Other instances of self-accelerating positive+negative

mass bound states are discussed in [22].
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so the gravitational forces between the particles involved are weak. A careful examination

of the solution in different limits then allows to identify4

m+ =
c3 − c4

2G

A+

A−
, m− =

c2 − c1

2G
, (3.13)

A−1
+ =

√

2c0 − c3 − c4

A−
, d = c1 − c3 .

All these quantities are invariant under shifts along the z axis. The approximation (3.14)

is now equivalent to

Gm+ ∼ Gm− ¿ d ¿ A−1
− ∼ A−1

+ , (3.14)

and in this limit we can approximately interpret m+, A+ and −m−, A−, respectively,

as the masses and accelerations of the positive and negative particles, and d as the dis-

tance between them. In particular, in the approximation (3.14) the harmonic difference of

accelerations satisfies (see figure 8)

1

A+
− 1

A−
' d . (3.15)

Note that with our definition, m− is positive, so the ghost mass is −m−. We can take

the four physical parameters of the solution to be m±, d and A−, while A+ is fixed in terms

of them.

In (3.9) we have already fixed the integration constant in ν so as to have

lim
r→0

e−ν |(z<c4) = 1 (3.16)

and therefore, according to (3.8), there is no conical defect at infinity as long as φ ∼ φ+2π.

On the other hand, at the segment inbetween the two rods we have

lim
r→0

e−ν |(c3<z<c1) =
(c0 − c3)(c2 − c3)(c1 − c4)

(c1 − c3)(c0 − c4)(c2 − c4)
(3.17)

and between the ghost rod and the acceleration horizon,

lim
r→0

e−ν |(c2<z<c0) =
(c0 − c1)(c0 − c3)

(c0 − c2)(c0 − c4)
. (3.18)

To cancel conical singularities on all segments we must require equality of (3.16), (3.17),

(3.18), i.e.,
(c2 − c3)(c1 − c4)

(c1 − c3)(c2 − c4)
=

c0 − c1

c0 − c2
=

c0 − c4

c0 − c3
. (3.19)

The conditions (3.19) leave only two free parameters in the solution, which we could take

to be the two masses m+, m−, of the dipole constituents. In that case, the size and

acceleration of the dipole would be fixed.

4These identifications are not uniquely determined: they can be modified by terms that are small in the

limit (3.14). Our choices simplify some expressions below.
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After some algebra and using the definitions (3.13), the second equality in (3.19) can

be exactly recast into the form of Newton’s third law

m+A+ = m−A− . (3.20)

Since necessarily we have A+ < A−, this implies that

m+ > m− . (3.21)

This requirement will be important later on.

Also, in the approximation of weak fields (3.14), the conditions (3.19) become

Gm+m−

d2
' m−A− = m+A− , (3.22)

which reproduce Newton’s force law, as expected. Finally, in this approximation eqs. (3.19)

imply

m+ − m− ≡ ∆m ' Gm+m−

d
. (3.23)

Hence the relative difference between the (absolute values of the) masses of the two com-

ponents of the dipole is small relative to their masses.

3.3 Pair creation of Bondi dipoles

If we analytically continue the solution of the previous subsection to imaginary time, we

obtain a Euclidean instanton where the dipole runs in a loop, with Euclidean time playing

the role of the angle coordinate in the loop. Since the solution is asymptotically flat, the

initial state is the Minkowski vacuum, which then tunnels to a zero-energy configuration

with two Bondi dipoles self-accelerating away in opposite directions. This decay of the

Minkowski vacuum is the non-perturbative analogue of the process (1.3),

In order to compute the Euclidean action IE , we follow [23]. The periodicity of Eu-

clidean time is fixed by requiring regularity at the Rindler horizon only —we are assuming

that the normal particle has no horizon. As long as we assume that the region near the

ghosts is smoothed out by ghost matter fields that satisfy the classical Einstein equations,

we do not need to know the details of how the naked singularity is avoided—nor how

normal matter modifies the geometry to avoid the black hole horizon. Bulk terms in the

action (including matter and ghost fields) vanish on-shell, and only boundary terms con-

tribute. These are entirely given in terms of the gravitational field. The action contains a

contribution from the Hamiltonian, which vanishes for this zero-energy configuration, plus

terms arising from the horizons. We are assuming that the positive mass particles possess

no black hole horizons, so the only contributions come from the acceleration horizons. The

action is then

IE = −∆A
4G

(3.24)

where ∆A = A(f) − A(i) is the difference between the areas of the acceleration horizons

after and before the nucleation process, i.e., in the instanton and in the reference Minkowski

background. Each of these is evaluated as

A =

∫

dφ

∫ zmax

c0

dz
√

gzzgφφ|r=0 . (3.25)
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Since the area of acceleration horizons is infinite, we have regularized them with a long

distance cutoff zmax À c0. In general z
(f)
max 6= z

(i)
max, and in order to make sure that the

subtraction is correctly performed, one must match the lengths of the two acceleration

horizons

` =

∫

dφ
√

gφφ|r=0,z=zmax
. (3.26)

Imposing `(f) = `(i) fixes the relation between the long-distance cutoffs z
(i)
max and z

(f)
max.

For finite cutoffs, the two areas are finite and we can compute their difference. Finally,

removing the regulators leaves a finite non-zero result

IE =
π

2GA−
(c1 − c2 + c3 − c4) = π

(

m+

A+
− m−

A−

)

. (3.27)

As an aside, we note that this result can be easily generalized to configurations with

arbitrarily many accelerating particles and ghosts. If the finite rods (of density ±1/2)

have endpoints at z = ci, then the contribution to the action coming from ∆A is of the

form π
2AG

∑

i ±ci, where the sign for ci is positive (negative) if the density along the axis

increases (decreases) as we go from right to left at z = ci. If we identify the masses and

accelerations with appropriate generalizations of (3.13), then this contribution to the action

is equal to π
∑

i ±mi

Ai
, where ghosts contribute with a minus sign.

Of course, the requirement of balance of forces (i.e., absence of conical singularities)

imposes relations between the parameters. Coming back to our example of the Bondi

dipole, the condition (3.21) together with A+ < A− imply that the action (3.27) is always

positive and the decay rate is exponentially suppressed. In the weak field approximation

the result reduces to

IE ' 2πm+d ' ∆m

TR
, (3.28)

where the Rindler temperature is TR = A+/2π. The rate of the non-perturbative version

of the decay (1.3) is therefore

Γ ∼ e−2πm+d . (3.29)

4. Materialization of ghost couples

4.1 Ghost pairs in Minkowski space

Can we also find a non-perturbative analogue of the decay process (1.6), in which no normal

particles are produced? Since (1.6) involves the creation of gravitons, non-perturbatively

the decay might not only produce gravitational waves but also change significantly the

final geometry. We shall show that this is indeed the case, and that the Minkowski vacuum

undergoes a topology change.

We expect the solution that describes the decay to involve two ghost particles acceler-

ating away from each other. In the terminology of the Weyl solutions discussed above, this

should correspond to a semi-infinite rod for the acceleration horizon, and a finite rod of

negative density for the ghost particle. From our Newtonian estimates in the introduction
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Figure 10: Weyl sources for ghost and anti-ghost accelerating apart (the anti-ghost lies in the

opposite Rindler wedge obtained by maximally extending the solution).

section, the two particles should be very close, r ∼ Gm−, i.e., very close to the acceleration

horizon. Therefore a strong gravitational backreaction is expected.

A simple way to construct this solution is to start from the configuration in the previous

section (eq. (3.9) and fig. 9) and remove from it the normal particle, i.e., the positive density

rod, by setting c3 = c4. This leaves only the ghost particle in the Rindler wedge covered by

these coordinates (its anti-ghost is in the opposite wedge). We must examine, though, the

condition for balance of forces in this new configuration. With our choice of parameters no

conical singularity is present at z < c1 (i.e., out to infinity), but, if c3 = c4, it is impossible

to eliminate the conical defect (3.18) at c2 < z < c0. The way around this, however, is

to take c2 → c0, hence eliminating the troublesome segment of the axis. In terms of the

‘physical’ parameters (3.11), (3.13), this implies

2Gm−A = 1 . (4.1)

(from now on we drop the subindex − from A− → A). Clearly, this means we are in a

regime of strong self-gravity, so the interpretation of m− as the ghost mass should not be

taken any strictly.

The Weyl form is rather unwieldy if one wants to study in detail the properties of this

configuration. To get a better understanding of the geometry, it is more convenient to note

that this solution is in fact a special case of the neutral C-metric of [19] (figure 7-right),

namely, one with a particular negative value for the mass parameter. We then use a more

conventional set of coordinates (see fig. 11-upper), in which the solution becomes

ds2 =
1

A2(x − y)2

[

G(y)dt̂2 + (1 + 2Gm−A)2
(

− dy2

G(y)
+

dx2

G(x)

)

+ G(x)dφ2

]

, (4.2)

where we use the form for the cubic function G(ξ) advocated in [24],

G(ξ) = (1 − ξ2)(1 − 2Gm−Aξ) . (4.3)

The change of coordinates between (r, z) and (x, y) can be found in [24]. The time co-

ordinate t used in the Weyl form of the metric has, for convenience, been rescaled to

t̂ = t A
1+2Gm−A . Note we have not imposed the condition (4.1) yet. It will be rederived

shortly.

The coordinate range is −∞ < y < −1 and −1 ≤ x ≤ 1, with y → x → −1 corre-

sponding to asymptotic infinity. The acceleration horizon lies at y = −1.

For our purposes here, the axes of φ, which lie at x = ±1, are of paramount importance.

The surfaces at constant t̂ and constant y > −∞, are, up to a conformal factor, described by

(1 + 2Gm−A)2
dx2

G(x)
+ G(x)dφ2 . (4.4)
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Figure 11: Section at t = 0 (with the angular direction φ suppressed) of the geometry with a

pair of ghost particles. The upper figure sketches the coordinate system: solid lines are constant

y ∈ (−∞, 1], dashed lines are constant x ∈ [−1, 1). The lines (actually surfaces) at constant y,

which surround the ghost singularity at y = −∞, do not quite close at the axis x = 1, which lies

an infinite spatial distance away. This corresponds to the infinite throat that stretches between the

particles, sketched in the lower figure by taking a slanted view. A surface at constant y (depicted

as a line) surrounding the ghost can be described as a sphere with an infinite funnel at one of its

poles (so it is topologically R
2, instead of S2). Since the ghosts are lumps that spread out to some

finite y away from the singularity, they actually extend all the way down the throat. The surface

y = −1 is an acceleration horizon, so the two particles are causally separated.

As long as 2Gm−A < 1, the function G(x) has simple zeroes at x = ±1. The coordinate

x can be regarded as roughly similar to cos θ on S2, so these surfaces are topological two-

spheres enclosing the ghost particle, and x = ±1 are the poles of the spheres. It is easy to
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see that if we identify φ ∼ φ+2π, then there is no conical defect at x = −1, i.e., extending

out to infinity. There is, though, a conical excess at the other pole x = +1, which stretches

from the ghost towards the acceleration horizon, and thence to the anti-ghost. It is easy to

see that this conical excess cannot be eliminated by any choice of parameters — just like

we already found using the Weyl form of the solution. However, if we impose the condition

(4.1), then the topology of these surfaces changes. Now the function

G(x) = (1 − x)2(1 + x) (4.5)

has a double zero at x = 1. As a result, the singularity at x = 1 is pushed an infinite spatial

distance away, so it is removed from the spacetime. The coordinates (x, φ) parametrize

now a surface with topology R
2, instead of S2. Geometrically it is a sphere with an infinite

funnel at one of its poles (figure 11-lower). Down the funnel at x → +1 it is convenient to

introduce a new coordinate

ζ = − log(1 − x) (4.6)

in terms of which the geometry (4.4), when the condition (4.1) holds, approaches

2
(

dζ2 + e−2ζdφ2
)

(4.7)

with ζ → ∞: the tip of the funnel recedes to infinity as its width shrinks.

Thus the effect of choosing the parameters to satisfy (4.1) is to create an infinite throat

that extends between the ghost and anti-ghost. Away from the naked singularities at the

position of the ghosts (y → −∞), the geometry is regular. Down the throat, when x ∼ +1,

and within the Rindler wedge −∞ < y ≤ −1, the solution can be approximated by

ds2 ' 1

A2(1 − y)2

[

G(y)dt̂2 − 4
dy2

G(y)
+ 2

(

dζ2 + e−2ζdφ2
)

]

. (4.8)

The size of φ-circles at constant x goes from zero at the position of the ghost, y → −∞,

to a maximum at the midpoint y = −1.

Figure 11 also reflects one peculiarity of this construction. Even though we have

been referring to the singularities in this metric as ghost particles, the fact is that they

are qualitatively different from the ones in (3.1). In particular, and in constrast to the

ghosts in the Bondi dipole of the previous section, there is no limit of this solution where

one recovers the single ghost solution (3.1). Then it becomes doubtful whether the ghost

singularities in this solution, which are more string-like than particle-like, can be identified

as localized “lumps of ghost matter”. This caveat should be borne in mind throughout our

discussion.

As the ghost and antighost accelerate away, the infinite throat inbetween them grows.

We can study the geometry at asymptotically late times using methods similar to those em-

ployed in [25]. First, note that asymptotic future lies in the upper wedge of the spacetime.

To describe this region, we take y > −1, i.e., we cross the Rindler horizon towards the

future, extending the solution in the standard manner. Since in this region G(y) > 0, we

now have y as the timelike coordinate, while t is spacelike. This means that the geometry

in this region is time-dependent.
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The range of coordinates that describes this “upper wedge” portion of spacetime is

−1 ≤ y < x ≤ 1. There is no singularity in this region. Asymptotic future is approached

as y → x → 1 with y < x. In this limit the throat stretches out to infinity as the

two particles fly away. To describe the resulting geometry when the ghosts are far away,

consider 1−x ¿ x−y ' 1−y, and introduce, besides (4.6), new coordinates that measure

proper distance and time

w =

√
2

A
t̂ , τ =

√
2

A(1 − y)
(4.9)

(recall t̂ is spacelike and y is timelike in the upper wedge). The spacetime in the aftermath

of the decay is then

ds2 → −dτ2 + τ2
(

dζ2 + e−2ζdφ2
)

+ dw2 (asymptotic future). (4.10)

It is now apparent that this is flat space: besides the flat coordinate w (which was Rindler

time t̂ in the Rindler wedge) the rest of the spacetime is the three-dimensional Milne

universe, which is locally flat. The Milne universe is an open (k = −1) FRW universe with

spatial sections of constant negative curvature. Note, however, that in the spatial sections

in (4.10) there is no need a priori to impose any periodicity requirements on φ, since ∂φ

does not have any fixed-points at finite spatial distance. But, since this is an extension

of the solution from the Rindler wedge, we must have the same periodicity for φ on both

sides of the Rindler horizon, i.e., φ ∼ φ + 2π also in (4.10). Although locally the geometry

is unaffected, these identifications change the spatial sections of the Milne universe from a

hyperboloid of topology R
2 to an infinite funnel of topology R × S1, the former being the

universal covering of the latter.

To summarize, the non-perturbative production of a pair of ghosts makes flat spacetime

undergo a topology change from R
1,3 to R

1,2 × S1. In the future, when the ghosts are far

away, one finds an asymptotically flat space in which a (non-singular) string-like object has

formed. The ‘core’ of the string is an infinite throat where a spatial direction is compactified

into a circle of shrinking radius. The geometry is time-dependent, and presumably contains

Einstein-Rosen cylindrical gravitational waves produced in the nucleation event.

In order to compute the Euclidean action for the instanton we shall use the results in

the previous section. The appearance of a new asymptotic region down the throat does

not give any additional contribution to the action of (3.27): one can easily check that the

Gibbons-Hawking boundary term
∫ √

γ K vanishes at the boundary at x = +1. Hence

we can directly read off the result from eq. (3.27), after making the parameter choices

appropriate for this solution. We find

IE = − π

2GA
(c0 − c1) = −πm−

A
= −2πGm2

− . (4.11)

This action is negative. However, as we have explained in section 2 above, this does not

imply an exponentially enhanced catastrophic decay. Rather, the production rate is always

suppressed, and is

Γ ∼ e−|IE | = e−2πGm2
− . (4.12)
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4.2 Conjuring up ghosts in deSitter space

In the previous subsection we have seen that the materialization of a pair of ghosts (without

accompanying normal particles) results in the formation of a new asymptotic region in the

shape of an infinite throat inbetween the ghosts, with a compactified spatial circle. The

creation of such a new infinity may sound a little disturbing and may cast some doubt

on the whole construction. We saw in section 2 that ghost domain wall formation in flat

space also came associated with the appearance of a new asymptotic region. In that case,

we found that the inclusion of a cosmological constant served to regularize the possible

divergences of the infinite volume that arises after nucleation.

This suggests that we consider the decay of empty deSitter space via the materialization

of two ghosts. Even if, as we will see, the appearance of an infinite throat is not avoided

in this way, the issues of regularization of the Euclidean action are much simpler, since the

Euclidean action of the instanton is already finite. The space left over as the ghosts fly

apart is again deSitter, although, as was the case with the flat space at asymptotic future

in the previous section, it has non-trivial global identifications.

The solution we seek is obtained from a generalization of the C-metric (4.2) to include

a cosmological constant Λ = 3H2 [26]. Its metric can be written as

ds2 =
1

A2(x − y)2

[

F (y)dt̂2 + (1 + 2Gm−A)2
(

− dy2

F (y)
+

dx2

G(x)

)

+ G(x)dφ2

]

, (4.13)

where

G(x) = (1 − x2)(1 − 2Gm−Ax) , F (y) = h2 + (1 − y2)(1 − 2Gm−Ay) , (4.14)

and, to reduce clutter, we have defined

h = H
1 + 2Gm−A

A
. (4.15)

Again, we have already chosen the sign of the mass parameter (with m− > 0) to correspond

to a ghost. It is obvious that as H → 0 we recover (4.2). The main difference with the

latter is that the roots of G(x) and F (y) now do not coincide. As a consequence, while

x still varies in the range [−1, 1], now y ∈ [−∞, y0], where y0 is the only real root that

F (y) has when m−A > 0 and H2 > 0. Since y0 < −1, the asymptotics of space differ

from (4.2): y = y0 is the deSitter horizon, and no spatial infinity can be reached (we will

see that y → x is future infinity). As before, y = −∞ is the naked singularity of the

ghost.

The (x, φ) sector in (4.13) is exactly the same as in (4.2), so the analysis of the geometry

of (4.4) in the previous section applies again: we remove the conical singularity at x = −1

by identifying φ ∼ φ + 2π. To eliminate the singularity at x = 1, the only choice is

eq. (4.1), which pushes it down a throat an infinite spatial distance away. Hence the

appearance of a new asymptotic region is not avoided. Looking down the throat using the

coordinate ζ of eq. (4.6), and inside the deSitter horizon, the geometry is well approximated
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by

ds2 ' 1

A2(1 − y)2

[

F (y)dt̂2 − 4
dy2

F (y)
+ 2

(

dζ2 + e−2ζdφ2
)

]

, (4.16)

which is qualitatively similar to the case without a cosmological constant, eq. (4.8).

As before, we are also interested in investigating the asymptotic future evolution of

the geometry. In this case we have to go beyond the future deSitter horizon, to the region

where y0 < y < x. There, the spacelike future infinity characteristic of deSitter appears

by taking y → x ∈ [−1, 1], where x is now one of the coordinates parameterizing future

infinity. Close to the pole at x = −1 (i.e., away from the throat) the future asymptotic

geometry approaches deSitter space. To see this, consider 1 + x ¿ x − y ' 1 + y, and

introduce new coordinates

1 + x =
A2r2

4
,

2H

A2
t̂ = w , 1 + y = e−Hτ , (4.17)

to recover exponentially expanding deSitter space

ds2 → −dτ2 + e2Hτ
(

dw2 + dr2 + r2dφ2
)

. (4.18)

Near the opposite pole at x = +1, we are in the throat region. The future asymp-

totic metric is also locally equivalent to deSitter space, which can be made manifest by

introducing, besides the coordinate ζ in (4.6), new coordinates (compare to (4.9))

w =

√
2

A
t̂ , sinhHτ =

√
2H

A(1 − y)
(4.19)

in terms of which

ds2 → −dτ2 +
1

H2
sinh2(Hτ)

(

dζ2 + e−2ζdφ2
)

+ cosh2(Hτ)dw2 . (4.20)

If the coordinate φ were non-compact and ranged over the entire real line, this would be

equivalent to the portion of deSitter space that lies beyond the cosmological horizon (an

“upper wedge” akin to the Milne region of Minkowski space). However, like in the previous

section, φ must be periodic by continuity of the full solution across the horizon. Hence,

the asymptotic geometry in the region close to the axis that runs between the ghosts is

deSitter space with a periodic spatial circle. Of course, as τ → ∞ the exponential expansion

inflates the size of this circle, at any finite value of ζ, so eventually it becomes effectively

non-compact.

The Euclidean instanton is obtained by Wick-rotating t̂ → itE . Regularity (up to the

naked ghost singularity, which we assume is smoothed out by ghost matter) requires the

identification

tE ∼ tE +
8π

F ′(y0)
, (4.21)

associated to the finite temperature of the deSitter horizon.

In order to compute the Euclidean action we use again (3.24), which allows us to

avoid dealing with the specific action for ghost matter, as long as it satisfies the Einstein
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equations. There is no contribution from the boundary of the infinite throat since the

Gibbons-Hawking term vanishes there. The acceleration horizons now are actually cos-

mological horizons, which are finite without the need for regularization. The reference

background is deSitter space with the same value for H, and a simple calculation yields

IE =
π

2GH2
(1 + y0) . (4.22)

Since 1+y0 < 0, this action, like in the asymptotically flat case considered earlier, is always

negative, but the decay rate is exponentially suppressed as Γ ∼ e−|IE |.

To illustrate this result, we consider a small cosmological constant and expand in

powers of H2G2m2
− (i.e., the square of the ratio between the gravitational size of the lump

and the Hubble radius). We find

IE ' −2πGm2
−

(

1 − 4H2G2m2
− + . . .

)

. (4.23)

In the limit H → 0 we correctly recover our previous result (4.11).

5. Discussion

We have studied theories with ghosts (“the Others”) that interact very weakly, through

gravity, with the ordinary world. Empty space can decay into ghosts and ordinary particles,

and we have focussed on the possibility that non-relativistic lumps of ghost matter be

produced by tunneling processes, involving only curvature scales smaller than µ.

In ordinary field theory, nucleation rates are usually estimated by using instanton

methods, as Γ ∼ e−IE , where IE is the corresponding action. We have computed IE for

a variety of such possible decays. In some cases (eqs. (2.9), (4.11), (4.22)), IE has turned

out to be negative. Naively, this would appear to lead to an exponentially enhanced

catastrophic decay rate. However, the Euclidean path integral (even in the absence of

gravity) in theories with ghosts is ill-defined, and the standard Euclidean rules do not

apply. In section 2 we have discussed nucleation processes using the canonical WKB

approach, without reference to Euclidean methods. We have argued that for systems of a

single degree of freedom, and for tightly bound systems of ghost and ordinary matter, the

nucleation rates should be estimated as

Γ ∼ e−|IE |. (5.1)

This formula may not be valid if, besides the gravitational interaction between ghosts

and matter, there are other dominant forces contributing to the tunneling (such as the

expansion of the universe). Here, we are mainly interested in the case when ghosts and

matter nucleate from nearly flat space, and the tunneling is possible due to the gravitational

energy-momentum transfer between matter and ghosts. In this situation, we expect (5.1)

to be valid. In more general cases, we expect that eq. (5.1) represents only a conservative

upper bound to the nucleation rate. Investigation of this more general case is left for

further research.
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A first class of decays involves the nucleation in flat space of lumps of ordinary matter

together with their ghost counterparts. For the spontaneous nucleation of diwalls (an

asymptotically flat configuration of concentrical walls, with an ordinary wall chasing after

a ghost wall), the corresponding Euclidean action is given by eq. (2.9). If the tensions of

the two walls are very different in magnitude, the action is of the form |IE| ∼ M6
P /σ2

1 ,

where σ1 is the tension of the ordinary wall. If both tensions are very similar, then the

action is parametrically given by

|IE| ∼
M6

P

σ2

δσ

σ
. (5.2)

The curvature radius of the walls is given by R ∼ 1/Gσ, so the above formula takes the

form |IE | ∼ M2
P RδR. The effective theory (1.1) is supposed valid only at distance scales

larger than the cutoff µ−1, so within the regime of validity of this effective theory,

|IE| &

(

MP

µ

)2

' 1060 (5.3)

so the process of diwall nucleation is extraordinarily suppressed, Γ ∼ e−1060

.

Such suppression does not appear to be at work in the nucleation of a pair of Bondi

dipoles (the non-perturbative analogue of (1.3)), for which we have computed the action

to be

IE ' 2πm+d , (5.4)

where m+ and d are the mass and size of the dipole. There is no obvious Planck-scale

suppression here. However, since we require d & µ−1, the process will be suppressed for

all lumps whose mass m is much larger than µ. In the context of the Standard Model

with parity symmetry, the only elementary particles which might have a mass comparable

to the gravitational cut-off scale are neutrinos. Could we then have non-perturbative

nucleation of neutrinos and ghost-neutrinos? The existence of the corresponding instanton

requires that the ordinary particle have larger mass than its ghost counterpart, eq. (3.21).

Now, the symmetry between the normal and ghost sectors is broken only by their different

coupling to gravity. So any differences between the masses of a particle and its ghost

must be due to self-energy corrections from the coupling to gravity. Since normal particles

are gravitationally attractive, whereas ghosts are repulsive, the gravitationally-induced

corrections to the mass will be

(∆m2
+)grav < 0 , (∆m2

−)grav > 0 . (5.5)

These work in a direction opposite to (3.21), and therefore the dangerous decay appears

to be not simply suppressed but actually forbidden!

Lastly, we have analyzed the non-perturbative analogue of (1.6). This involves a dra-

matic topology change mediated by an instanton with negative Euclidean action

IE ' −2πGm2
− . (5.6)

As we have seen, the negative sign does not spell doom since we should use (5.1) for the

decay rate. If we demand that the size of the nucleated configuration ∼ A−1 ∼ Gm− be
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larger than the cutoff scale µ−1, then this process is as strongly suppressed as (5.3), and

therefore imposes no phenomenological constraints.

The decays of flat space involving ghost matter that we have studied do not, by any

means, exhaust all possibilities. We have considered ghost domain walls and ghost particles,

but ghost cosmic strings can also unstabilize the vacuum. A ghost cosmic string coupled to

gravity creates a conical excess. If the string is open with ghost monopoles at its endpoints

(i.e., the string is topologically unstable) then the string will pull the monopoles together:

such strings can not pop out of the vacuum spontaneously. However, string vortices, even

topologically stable ones, can end on black holes [27]. If a ghost string has black holes

(which necessarily have positive mass) at its endpoints, then the string will push the black

holes apart. One can then envisage a process in which one such ghost string with two black

holes attached is nucleated out of the flat vacuum. Following [28], the relevant instanton

can be easily constructed, and the action is

IE ' πm2

T
− πGm2 =

πm2

T

(

1 − T

M2
P

)

, (5.7)

where m is the mass of the black holes and T the absolute value of the ghost string tension.

The first contribution in (5.7) is the nucleation rate of the string itself, and the second is

an enhancement of the decay due to black hole entropy5. The latter becomes subleading

for string tensions T ¿ M2
P , so the factor in brackets in (5.7) can be taken to be of order

one. In order that the size of the nucleated configuration be larger than the gravitational

cutoff we must require m/T & µ−1. Since the black holes must also be larger than Planck

size, m & MP , we find that

IE &
MP

µ
∼ 1030 . (5.8)

Again, the nucleation rate is strongly suppressed.

The results presented in this paper are quite encouraging for the energy-parity-symme-

tric theory in (1.1). In all the cases where we have found the possibility to conjure ghosts,

we have seen they can be exorcized away for all of eternity (for practical purposes), in

the sense that |IE| is always extremely large for the non-perturbative decay processes

considered. Nevertheless, it should be kept in mind that the Euclidean path integral is ill-

defined in theories with a ghost sector, and our justification of eq. (5.1) for the nucleation

rates is rather heuristic. In this sense, our analysis should be regarded as preliminary.

A more rigorous derivation of nucleation rates in theories with ghosts deserves further

investigation. One might also worry that the suppression of the decay seems to be of a

different sort in each of the cases we have studied: while (5.2), (5.6), (5.7) are suppressed by

the weakness of gravity, the Bondi pair prodution (5.4) is instead eliminated by dynamical

considerations. There does not seem to be an underlying generic argument that guarantees

that ghost decays are always phenomenologically harmless. Here we have considered what

appear to be the simplest and most natural decay channels, but we cannot rule out the

existence of a different and dangerous non-perturbative instability.

5In order to construct the instanton the black holes must charged and extremal (or almost extremal) [28],

so their entropy is Sbh ' πGm2.
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A. Tunneling paths

In section 2.4 we considered the nucleation of walls and diwalls using the canonical WKB

approach. Although the explicit form of the tunneling path was not needed in order to

integrate the Hamilton-Jacobi equation, it remains to be shown that such path can be

constructed. Also , in order to remove a certain sign ambiguity [see the discussion around

eq. (2.41)] we assumed that there is a path where the momentum associated with the

position of the wall vanishes, p = 0, or where V+ = V−. Here, we discuss the construction

of such paths. Again, we follow the approach of Ref. [14] (with minor modifications to

accommodate the case of compact geometries).

Eqs. (2.29) with p = 0 can easily be solved for R̂′
± ≡ R′(r = q ± ε):

R̂′
±

L
=

1

2

(

(V− − V+)

4πGσR̂
∓ 4πGσR̂

)

. (A.1)

Likewise, from (2.28), we can find the momentum Π̂L ≡ ΠL(r = q),

Π̂2
L =

R̂2

G2

(

(V+ − V−)2

64π2G2σ2R̂2
− V+ + V−

2
+ 4π2G2σ2R̂2 − 1

)

. (A.2)

For instance, in the case when the cosmological constants are the same on both sides

of the wall, we can take the turning point before tunneling to be regular inside the wall,

so that M− = 0, but allow for an infinitessimal mass of the initial bubble M+ 6= 0. In this

case V− = 1 − H2R̂2 and V+ = 1 − H2R̂2 − 2GM+/R̂. The momentum is given by

Π̂2
L =

R̂2

G2

{

H2R̂2 +

(

2πGσR̂ +
M+

4πσR̂2

)2

− 1

}

.

The zeroes of the quantity in curly brackets define the turning points. In the limit when

M+ → 0, one of the turning points tends to zero (vanishing initial size)

R̂b ≈ (M+/4πσ)1/2 → 0,

and the other is given by the size of the wall at the moment of nucleation

R̂a = Rw = [H2 + (2πGσ2)]−1/2.

In this limit, the expression simplifies to Π̂2
L = G−2R̂2[1 − (H2 + (2πGσ)2)R̂2].

Let us first consider the case of negative tension walls nucleating in deSitter. For given

radius of the wall R̂, we can find a three geometry by solving the following differential
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equations:

(

R′

L

)2

= 1 + V (R) +
G2 Π̂2

L

R̂2

(

R

R̂

)2

, (r < q), (A.3)

(

R′

L

)2

= (1 + V (R))

{

1 +
G2 Π̂2

L

R̂2(1 + V+(R̂))

}

. (r > q). (A.4)

These 3-geometries will automatically satisfy the appropriate junction conditions at R = R̂.

They will also correspond to the turning point geometries when Π̂L = 0, that is, when

R̂ = R̂a or R̂ = R̂b. For intermediate values of R̂, they interpolate between turning points.

The sequence of 3-geometries is schematically represented in figure 4. It is important that

for R → 0 we have R′/L → 1, so that the geometry is locally flat at the origin, inside the

wall. On the other hand, right outside the wall, eq. (A.1) shows that the radius is growing

R̂′
+ > 0, hence it is natural to choose a boundary condition such that as we approach the

horizon 1 + V = 0, we have R′ = 0+. This geometry can either be continued analytically

past the horizon, or simply matched smoothly with the original turning point solution

beyond the horizon (leaving the part beyond the horizon unchanged throughout the whole

semiclassical path.) For r < q, we have V = −H2R2, and eq. (A.3) leads to

R(y) = α−1 cos αy, (r < q), (A.5)

where y stands for proper distance, dy = Ldr, and

α2 ≡ H2 − G2 Π̂2
L

R̂4
> H2. (A.6)

In the last inequality, we have used that Π̂2
L < 0 under the barrier. Thus, the geometry

inside of the wall is just that of a cap of a three-sphere of radius α−1. At the first turning

point, when R̂ = R̂b ≈ (M+/4πσ)1/2, Π̂L vanishes and the curvature radius is “large”,

α−1 = H−1. However, as R̂ grows to be a few times R̂a, we find that the second term

in (A.6) quickly dominates, and the curvature radius of the three sphere becomes much

smaller, α−1 ∼ (M+/σ)1/2 (vanishingly small as M+ tends to zero). The curvature radius

of the geometry inside the bubble grows back to its original size α−1 = H−1 as the second

turning point is approached. The solution outside the bubble is obtained by integrating

eq. (A.4). Note that the term in curly brackets in the right hand side is just a constant,

and so the solution is basically the warp factor of an “Anti”-Schwarzschild-deSitter geom-

etry (with negative mass parameter M+ < 0), with “Hubble” parameter H, but with an

unconventional parametrization. For instance, in the limit M+ → 0 we have

R(y) ≈ H−1 cos βHy, (r > q),

where β < 1 is the square root of the term in curly brackets in eq. (A.4). The 3-geometry

always contains a maximal circle of the size of the horizon of the (fictitious) “Anti”-

Schwarzschild-deSitter geometry. In particular, the 3-volume is large for any value of

R̂. In the limit M+ → 0 (and ignoring the fact that a small part of the volume is cut out
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by the bubble) the 3-volume scales like V3 ∼ 1/βH3. Hence, we have found a sequence of

three geometries interpolating between both turning points, where the 3-volume is always

of the order H−3 or larger. This is in contrast with the picture where the three geometry

first disappears and then reappears with a large bubble in it.

For walls of positive tension, we can construct interpolating geometries along the same

lines. However, for eq. (A.1) now shows that in the limit M+ → 0 and finite R̂, the radius

R(r) is always decreasing right outside the bubble R̂′
+ < 0. Hence, it is convenient to

choose the boundary condition for r > q in a form appropriate to decreasing radii. Thus,

instead of (A.4) we can use (A.3) also outside the bubble. The sequence of 3-geometries

is schematically represented in figure 3. Initially, in the limit of small mass GM+ ¿ H−1,

the geometry is basically that of a 3-sphere of radius H−1 with a small spherical wall of

radius R̂ = R̂b ∼ (M+/σ)1/2. As we increase R̂ to a few times R̂b, the curvature radius

of the geometry on both sizes of the wall becomes comparable to the radius of the wall.

As R̂ is further increased, the geometry on both sides becomes more and more symmetric,

corresponding to two spherical caps of curvature radius α−1. As we approach the second

turning point, R̂ = R̂b = Rw, this curvature radius becomes H−1. In this case, the path

we are considering first shrinks the spatial geometry to a very small size ∼ (M+/σ)1/2, and

then the new geometry grows from this seed. Thus, in the present case, if we take the limit

when M+ → 0, the initial geometry disappears and the new one reappears from “nothing”.

Finally, we may consider the paths for nucleation of diwalls. In this case, the con-

struction of a path with p = 0 seems rather tricky, because there are two independend

wall radii. Instead, since the instanton in this case has the trivial topology of R4, we can

construct a semiclassical path by simply slicing the instanton on surfaces of constant coor-

dinate T ≡ y cos χ, where χ is the polar coordinate on the three-spheres. For T → −∞ the

geometry is that of flat three-dimensional Euclidean space, while for T = 0 we have the

turning point with two nested domain walls. The potential vanishes everywhere, V = 0,

and hence the equality V+ = V− is trivially satisfied accross each wall. This justifies the

use of eq. (2.41) in this case too.
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